Quickly Compute Exact Shortest Paths with Changing Weights

Problem: Classical approaches too slow (text book approaches need several seconds)

Challenges:
- Traffic congestion constantly perturbates driving speeds.
- Use-specific needs. For example:
 - Trucks drive slower on the freeway.
 - Some people want to avoid highways.
- Huge network with millions of intersections.

Requirements:
- For Europe graph:
 - Path query must be fast \(\approx 1 \text{ ms} \)
 - Edge weights changeable in \(\approx 1 \text{ sec} \)
 - Preprocessing can be slow (Map updates are rare)

Step 1: Preprocessing

- Compute Nested Dissection Order using for example FlowCutter
- Compute Chordal Supergraph / Customizable Contraction Hierarchy
- Nodes ordered bottom to top according to order

Step 2: Customization

Objective:
- Introduce / Exchange weights

Algorithm:
- Enumerate all triangles bottom to top
- Path along triangle top always longer than along triangle bottom
- Lower triangle inequality

Step 3: Path Query

- Bidirectional Graph Search between source and target
 - Only follow upward edges
- Searches meet at high node
- Can use Elimination Tree instead of Dijkstra’s algorithm

References:
- Open source implementation: https://github.com/RoutingKit/RoutingKit