' l I I I max planck institut
informatik

Truly Subcubic Algorithms for
Language Edit Distance and RNA Folding
via Fast

Karl Bringmann, Fabrizio Grandoni, Barna Saha, Virginia Vassilevska Williams

June 11, 2017

Bounded Differences (BD) Matrices

Integer matrix M has BD if for all i, j:

Mli,jl — MJi,j + 1] and

Mi,jl=M[i+1,)

IN

= N = DN

_ =

INA

= N N OO

© -~ =~ DN
N W W DN

More generally: W-BD when differences are at most W

l l I I max planck institut
informatik

(min,+) Product

For nxn-matrices A, B, their (min,+) product C = A * B is defined by

Cli,j] = mkinA[i, k]l + B[k,]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer'71]
trivial algorithm: 0(n?®)

best known algorithm: n3/20Wlogn) [Williams'14]

Standard matrix multiplication: Cli,j] = z Ali, k] - B[k, j]
K
time 0(n®) where w < 2.373

l l I I max planck institut
informatik

(min,+) Product

For nxn-matrices A, B, their (min,+) product C = A * B is defined by

Cli,j] = mkinA[i, k]l + B[k,]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer'71]
trivial algorithm: 0(n?®)

best known algorithm: n3/20Wlogn) [Williams'14]

Big Open Problem: [s (min,+) product in time 0(n3~¢) for some £ > 07?

Study special cases!

l l I I max planck institut
& informatik

(min,+) Product for Structured Matrices

Matrices with small entries: [Alon,Galil,Margalit'97]

If A, B have entries in {-T,...,T} U {00}
then A * B can be computed in time 0(Tn®)

Sketch:

Cli,jl = mkinA[i, k] + B[k,] > A'[i, j] = xAlbJ]
C'li, j] = zA'[i, k] B'[k,j]
k

Cli,j] = degree of highest monomial in C'[i, j]

l l I I max planck institut
informatik

(min,+) Product for Structured Matrices

Matrices with small entries: [Alon,Galil,Margalit'97]

If A, B have entries in {-T,...,T} U {00}
then A * B can be computed in time 0(Tn®)

Matrices with few distinct entries: [Yuster’09]

If each row of A has a small number of distinct entries,
then for arbitrary B we can compute A * B in truly subcubic time

Question: Is (min,+) product in time 0(n3~%) for BD matrices?

Why care about BD matrices?

l l I I max planck institut
informatik

1st Application: Language Edit Distance (LED)

for simplicity: |G| = 0(1)

CFG Parsing:
Given a context-free grammar G and a string s of length n, is s in L(G)?
... is in time 0(n®) [L. Valiant'75]

Language Edit Distance: ,error-correcting CFG parsing”

Given a CFG (¢ and a string s, compute minimum edit distance of s to
any string in L(G) I
insertions, deletions, substitutions

...is'in time 0(n®) [Aho,Peterson’72]
(" . o)
We show using Valiant’'s approach:
If (min,+) product on BD matrices is in time 0(n%), - ~8 page proof
then LED is in time 0 (n%)
. _

intuitive reason for BD: LED(s) and LED(sc) differ by < 1 for any symbol ¢

2" Application: RNA Folding

RNA can be seen as a sequence of symbols from {A,C,G,U}

Biologists want to predict the secondary structure of RNA:

A can pair with U, and C can pair with G

Given an RNA sequence, find the largest set of
matching pairs, such that no two pairs intersect

Mr 1 M | |
AUUGCAT not allowed but AUUCCAG is okay

... is in time 0(n3) [Nussinov,Jacobson’80]

Disclaimer: No author of ... can be cast as a LED problem (without substitutions)
this paper is a biologist.

If (min,+) product on BD matrices is in time 0(n%),
then RNA Folding is in time 0 (n%)

l l I I I max planck institut
informatik

3rd Application: Optimal Stack Generation

for simplicity: |Z] = 0(1)
Optimal Stack Generation:

Given a string s over alphabet X, determine the shortest sequence of stack
operations push(.), emit, pop s.t. performing these operations starting from
an empty stack will emit s and end with an empty stack

s = bab 2 a
b b b b b b
push(b) einit push(a) eTit pop eTit pop
b a b
...isintime 0(n®) (dynamic programming) [Tarjan’05]

We show: If (min,+) product on O(1)-BD matrices is in time 0(n%),
then Optimal Stack Generation is in time 0 (n%)

intuitive reason for BD: OSG(s) and OSG(sc) differ by < 3 forany c € X

Main Result

... SO we have seen that (min,+) product of BD matrices is well motivated

4)
Main Result:
We can e the (min,+) product of BD matrices
randomized time O deterministic time 0(n?%")
. _J
4 B
Generalization:
For W-BD matrix A with W « n3~¢ =~ n%%26 and arbitrary B
we can compute their (min,+) product in randomized truly subcubic time
- y,

max planck institut
& informatik

lllpl

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i, j] = C[i,j] + 0(n®?) time 0(n*°)

compute C[i, j] exactly for all i, j that are multiples of n%2

set D[i, j] to some C[i’,j’] by rounding i, j

O 0 ® >

® . » -
If A, B are BD, then their iy
(min,+) product is also BD a@'jh

® @ ® e

(i,))
———g
® = - o
n0-2

Il p B I o plonck insii e ® e ®
0 informatik

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

Ali, k] + B[k, j] = C[i,j] implies |A[i, k] + B[k,j] — D[i, /]| < 0(n°?)

call these triples (i, k, j) relevant

then C[l']] - k:(i,k,jrglrl'glevantA[l, k] T B[k,]]

l l I I max planck institut
informatik

Algorlthm Sketch (i, k,) relevant:
|Ai, k] + Blk, j]
— D[i,jl| £ 0(n°?)

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

2) Cover most relevant triples:

fix i*,j*, and define matrices A*, B*

A'li k ‘ lJ)—(/Lv‘/H;U//
k]]. 1)

(min,+) product C* of A*, B*:

C*[i,j] = min A"[i, k] + B*[k,j] = Cli,jl = DIi,j"| + DIi", "] = DIi",J]

can be cancelled afterwards

l l I I I max planck institut
informatik

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

2) Cover most relevant triples:

fix i*,j*, and define matrices A*, B*

(i, k,j) relevant:
|Ali, k] + Blk, j]
— D[i,j]| < 0(n°?)

A*[i, k] = (Ali, k] + Blk,j*] = D[i,j"]) — (A[i*, k] + Blk,j*] = D[i%,j"])

B*[k,jl = (Ali", k| + Blk,j| = D[i", j1)

if (i,k,j%), %k, j5), (" k, j) are all relevant, then |A*[i, k]|, |B*[k,j]| = 0(n%?)

set all 2(n°%?)-entries of A*, B* to «

then (min,+) product of A* and B* can be computed in time 0 (n®*%2)

(i, k, j) is ,covered” if A*[i, k] and B*[k, j] are 0(n®?), i.e., not set to o

Algorlthm Sketch (i, k,) relevant:
|Ai, k] + Blk, j]

_D P9 < 0.2
Input: BD matrices A, B. Want: C[i,j] = mkinA[i, k] + B[k, /] [, /]l < 0(n™%)

(i,k,j) is ,covered®
if A*[i, k] and

2) Cover most relevant triples: B*[k, j] are 0(n®%)
in some round

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

initialize C[i, j] == oo

repeat for 0(n°3logn) rounds: 0(n°3) iterations
pick i, j* randomly
A*[i, k] = (Ali, k] + Blk,j*] — DIi,j*]) — (Ali*, k] + Blk,j*] = D[i%,j*])
B*[k,j] = (Ali", k| + Blk,j| = D[i", j])
set all 2(n%?)-entries of A%, B* to «
compute (min,+) product C* = A* * B* time 0(n®*%2) = 0(n*°)

Cli,j] = min{ C[i,j], C*[i,j1+ D[i,j*] = D[i*,j*]1+ D[i",j] }

Lem: After O(n” logn) rounds there are 0(n3=°/3 + n?%) total time
uncovered relevant triples w.h.p. = 0(n*?) 0 (n29)

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

"for each uncovered relevant (i, k, j):"
Cli,j] = min{ C[i,], A[i, k] + B[k,] }

now C is correct output

(i, k,j) relevant:
|Ali, k] + Blk, j]
= D[i,jIl < 0(n®?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k, j] are 0(n°?)
in some round

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

(i, k,j) relevant:
|Ali, k] + Blk, j]
— D[i,j]| < 0(n°?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k, j] are 0(n°?)
in some round

o ® @ L o
for alli’, k', j' divisible by n®2:
if (i',k’,j") is relevant and uncovered:
O - O O
foralli’ —n? <i<i,
k' —n%2 <k <k @'Jh
jl-nt2<j<n *—* —
)))
Cli,j] = min{ C[i,], A[i, k] + B[k, j] } -==9
) ® ° ® °
now C is correct output
O » O O

Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

for alli’, k', j' divisible by n®2:

if (i',k’,j") is relevant and uncovered:

foralli’ —n®? <i<i,
k' —n%? <k <k, -
j'=n%?<j<"

Cli,j1 = min{ C[i, 1, A[i, k] + B[k, j] }

now C is correct output

(i, k,j) relevant:
|Ali, k] + Blk, j]
= D[i,jIl < 0(n®?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k,j] are 0(n°?)
in some round

0 (n?*) iterations

time 0(n°3logn)

either all or none are
relevant and uncovered

total time 0 (n*°)

= number of relevant

uncovered triples

total time of algorithm O (n??)

Correctness (i, k, j) relevant:
A[i, k] + B[k, j]

Lem: After O(n” logn) rounds there are 0(n3°/3 + n?>) — D[i,j]l < 0(n®?)

uncovered relevant triples w.h.p.

(i, k,j) is ,covered”
if A*[i, k] and
B*[k,j] are 0(n°?)
in some round

If (i,k,j*),(i"k,j*),(i", k,j) are all relevant,
then (i, k,j) is covered

pick i, j* randomly
B[k, jl = (Ali", k] + Blk,jI = D[i",j])

set all 2(n%?)-entries of A%, B* to «

Correctness (i, k, /) relevant:
A[i, k] + B[k, j]

Lem: After O(n” logn) rounds there are 0(n3=P/3 4+ n?5) — D[i,jIl £ 0(n®?)

uncovered relevant triples w.h.p.

(i, k,j) is ,covered”

If (i,k,j*), (" k,j*), (" k,j) are all relevant, if A*[i, k] and

then (i, k, j) is covered B*[k, j] are 0(n®?*)
in some round

When are (i, k,j*), (i*, k,j*), (", k,j) all relevant?

bipartite graph G:
we ,cover” a relevant triple (i, k, j)
if i,j,i*,j* form a 4-cycle in Gy,

' need: G, contains many 4-cycles
i (i, k, /) J ‘ ¥
is relevant ° have: many relevant triples

© 0 0

Lem: Any bipartite graph with m > 4n'-> edges contains Q(m*/n*) 4-cyles.

Algorithm Recap (i, k, j) relevant:
|Ai, k] + Blk, j]

Input: BD matrices A, B. Want: C|[i,j] = min A[i, k] + BJk,]
k — DI[i,j]l < 0(n®2)

1) Compute approximation D[i, j] = C[i, j] + 0(n%?)

compute C[i, j] exactly for all i, j that are multiples of n°%?2

set D[i, j] to some C[i’,;’] by rounding i, (i,k,j) is ,covered

| if A*[i, k] and
2) Cover most relevant triples: B*[k, j] are 0(n°?)

initialize C[i, j] :== in some round

repeat for 0(n%3 logn) rounds:
pick i*,j* randomly
A[i, k] = (Ali, k] + Blk,j*] = D[i,j*]) — (Ali*, k] + B[k, j*] = D[i*,j*])
B*[k,j] = (Ali", k] + Blk,jl = D[i",j])
set all 2(n%?)-entries of A*, B* to o
compute (min,+) product C* = A™ x B*
Cli,j] == min{ C[i,j1, C*[i,j1+ D[i,j*] = D[i*,j*] + D[i",j] }
3) Enumerate uncovered relevant triples:
forall i’,k’,j’ divisible by n%2:
if (i',k’,j") is relevant and uncovered:
foralli’ —n%2 <i<i’, k'—n"2<k<k', j'—n%<j<j"
C[i,j] == min{ C[i,j], A[i, k] + B[k, j] }

Conclusion

-

_

~

we generalize the subcubic special cases of (min,+) matrix multiplication:

(min,+) product of BD matrices can be solved in rand. time 0(n*%3)

this yields subcubic 0 (n?%?) algorithms for:

- Language Edit Distance, a classic parsing problem from 72

- RNA Folding, a classic bioinformatics problem from ‘80

- Optimal Stack Generation, an open problem by Tarjan

J

Open Problems:

. . ?
1) What is the right exponent [Abboud,Backurs,V-Williams15]

Conditional lower bounds imply that LED and RNA Folding are in Q(n®),

2) Find more applications of BD (min,+) product

l l I I max planck institut
informatik

