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Bounded Differences (BD) Matrices

Integer matrix M has BD if for all i, j:

Mli,jl — MJi,j + 1] and

Mi,jl=M[i+1,)
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More generally: W-BD when differences are at most W
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(min,+) Product

For nxn-matrices A, B, their (min,+) product C = A * B is defined by

Cli,j] = mkinA[i, k]l + B[k, ]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer'71]
trivial algorithm: 0(n?®)

best known algorithm: n3/20Wlogn) [Williams'14]

Standard matrix multiplication: Cli,j] = z Ali, k] - B[k, j]
K
time 0(n®) where w < 2.373
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(min,+) Product

For nxn-matrices A, B, their (min,+) product C = A * B is defined by

Cli,j] = mkinA[i, k]l + B[k, ]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer'71]
trivial algorithm: 0(n?®)

best known algorithm: n3/20Wlogn) [Williams'14]

Big Open Problem: [s (min,+) product in time 0(n3~¢) for some £ > 07?

Study special cases!

l l I I max planck institut
& informatik



(min,+) Product for Structured Matrices

Matrices with small entries: [Alon,Galil,Margalit'97]

If A, B have entries in {-T,...,T} U {00}
then A * B can be computed in time 0(Tn®)

Sketch:

Cli,jl = mkinA[i, k] + B[k, ] > A'[i, j] = xAlbJ]
C'li, j] = zA'[i, k] B'[k,j]
k

Cli,j] = degree of highest monomial in C'[i, j]
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(min,+) Product for Structured Matrices

Matrices with small entries: [Alon,Galil,Margalit'97]

If A, B have entries in {-T,...,T} U {00}
then A * B can be computed in time 0(Tn®)

Matrices with few distinct entries: [Yuster’09]

If each row of A has a small number of distinct entries,
then for arbitrary B we can compute A * B in truly subcubic time

Question: Is (min,+) product in time 0(n3~%) for BD matrices?

Why care about BD matrices?
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1st Application: Language Edit Distance (LED)

for simplicity: |G| = 0(1)

CFG Parsing:
Given a context-free grammar G and a string s of length n, is s in L(G)?
... is in time 0(n®) [L. Valiant'75]

Language Edit Distance: ,error-correcting CFG parsing”

Given a CFG (¢ and a string s, compute minimum edit distance of s to
any string in L(G) I
insertions, deletions, substitutions

...is'in time 0(n®) [Aho,Peterson’72]
(" . o )
We show using Valiant’'s approach:
If (min,+) product on BD matrices is in time 0(n%), - ~8 page proof
then LED is in time 0 (n%)
. _

intuitive reason for BD: LED(s) and LED(sc) differ by < 1 for any symbol ¢



2" Application: RNA Folding

RNA can be seen as a sequence of symbols from {A,C,G,U}

Biologists want to predict the secondary structure of RNA:

A can pair with U, and C can pair with G

Given an RNA sequence, find the largest set of
matching pairs, such that no two pairs intersect

Mr 1 M | |
AUUGCAT not allowed but AUUCCAG is okay

... is in time 0(n3) [Nussinov,Jacobson’80]

Disclaimer: No author of ... can be cast as a LED problem (without substitutions)
this paper is a biologist.

If (min,+) product on BD matrices is in time 0(n%),
then RNA Folding is in time 0 (n%)
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3rd Application: Optimal Stack Generation

for simplicity: |Z] = 0(1)
Optimal Stack Generation:

Given a string s over alphabet X, determine the shortest sequence of stack
operations push(.), emit, pop s.t. performing these operations starting from
an empty stack will emit s and end with an empty stack

s = bab 2 a
b b b b b b
push(b) einit push(a) eTit pop eTit pop
b a b
...isintime 0(n®) (dynamic programming) [Tarjan’05]

We show: If (min,+) product on O(1)-BD matrices is in time 0(n%),
then Optimal Stack Generation is in time 0 (n%)

intuitive reason for BD: OSG(s) and OSG(sc) differ by < 3 forany c € X



Main Result

... SO we have seen that (min,+) product of BD matrices is well motivated

4 )
Main Result:
We can e the (min,+) product of BD matrices
randomized time O deterministic time 0(n?%")
. _J
4 B
Generalization:
For W-BD matrix A with W « n3~¢ =~ n%%26 and arbitrary B
we can compute their (min,+) product in randomized truly subcubic time
- y,
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Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i, j] = C[i,j] + 0(n®?) time 0(n*°)

compute C[i, j] exactly for all i, j that are multiples of n%2

set D[i, j] to some C[i’,j’] by rounding i, j

O 0 ® >

® . » -
If A, B are BD, then their iy
(min,+) product is also BD a@'jh

® @ ® e

(i, ))
———g
® = - o
n0-2
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Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

Ali, k] + B[k, j] = C[i,j] implies |A[i, k] + B[k,j] — D[i, /]| < 0(n°?)

call these triples (i, k, j) relevant

then C[l']] - k:(i,k,jrglrl'glevantA[l, k] T B[k,]]
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Algorlthm Sketch (i, k, ) relevant:
|Ai, k] + Blk, j]
— D[i,jl| £ 0(n°?)

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

2) Cover most relevant triples:

fix i*,j*, and define matrices A*, B*

A'li k ‘ lJ)—(/Lv‘/H;U//
k]]. 1)

(min,+) product C* of A*, B*:

C*[i,j] = min A"[i, k] + B*[k,j] = Cli,jl = DIi,j"| + DIi", "] = DIi",J]

can be cancelled afterwards
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Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

2) Cover most relevant triples:

fix i*,j*, and define matrices A*, B*

(i, k,j) relevant:
|Ali, k] + Blk, j]
— D[i,j]| < 0(n°?)

A*[i, k] = (Ali, k] + Blk,j*] = D[i,j"]) — (A[i*, k] + Blk,j*] = D[i%,j"])

B*[k,jl = (Ali", k| + Blk,j| = D[i", j1)

if (i,k,j%), %k, j5), (" k, j) are all relevant, then |A*[i, k]|, |B*[k,j]| = 0(n%?)

set all 2(n°%?)-entries of A*, B* to «

then (min,+) product of A* and B* can be computed in time 0 (n®*%2)

(i, k, j) is ,covered” if A*[i, k] and B*[k, j] are 0(n®?), i.e., not set to o




Algorlthm Sketch (i, k, ) relevant:
|Ai, k] + Blk, j]

_D P9 < 0.2
Input: BD matrices A, B. Want: C[i,j] = mkinA[i, k] + B[k, /] [, /]l < 0(n™%)

(i,k,j) is ,covered®
if A*[i, k] and

2) Cover most relevant triples: B*[k, j] are 0(n®%)
in some round

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)

initialize C[i, j] == oo

repeat for 0(n°3logn) rounds: 0(n°3) iterations
pick i, j* randomly
A*[i, k] = (Ali, k] + Blk,j*] — DIi,j*]) — (Ali*, k] + Blk,j*] = D[i%,j*])
B*[k,j] = (Ali", k| + Blk,j| = D[i", j])
set all 2(n%?)-entries of A%, B* to «
compute (min,+) product C* = A* * B* time 0(n®*%2) = 0(n*°)

Cli,j] = min{ C[i,j], C*[i,j1+ D[i,j*] = D[i*,j*]1+ D[i",j] }

Lem: After O(n” logn) rounds there are 0(n3=°/3 + n?%) total time
uncovered relevant triples w.h.p. = 0(n*?) 0 (n29)




Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

"for each uncovered relevant (i, k, j):"
Cli,j] = min{ C[i, ], A[i, k] + B[k, ] }

now C is correct output

(i, k,j) relevant:
|Ali, k] + Blk, j]
= D[i,jIl < 0(n®?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k, j] are 0(n°?)
in some round




Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

(i, k,j) relevant:
|Ali, k] + Blk, j]
— D[i,j]| < 0(n°?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k, j] are 0(n°?)
in some round

o ® @ L o
for alli’, k', j' divisible by n®2:
if (i',k’,j") is relevant and uncovered:
O - O O
foralli’ —n? <i<i,
k' —n%2 <k <k @'Jh
jl-nt2<j<n *—* —
) ) )
Cli,j] = min{ C[i, ], A[i, k] + B[k, j] } -==9
) ® ° ® °
now C is correct output
O » O O




Algorithm Sketch

Input: BD matrices 4, B. Want: C[i,j] = mkinA[i, k] + Blk,j]

1) Compute approximation D[i,j] = C[i,j] + 0(n°?)
2) Cover most relevant triples

3) Enumerate uncovered relevant triples:

for alli’, k', j' divisible by n®2:

if (i',k’,j") is relevant and uncovered:

foralli’ —n®? <i<i,
k' —n%? <k <k, -
j'=n%?<j<"

Cli,j1 = min{ C[i, 1, A[i, k] + B[k, j] }

now C is correct output

(i, k,j) relevant:
|Ali, k] + Blk, j]
= D[i,jIl < 0(n®?)

(i, k,j) is ,covered”
if A*[i, k] and
B*[k,j] are 0(n°?)
in some round

0 (n?*) iterations

time 0(n°3logn)

either all or none are
relevant and uncovered

total time 0 (n*°)

= number of relevant

uncovered triples

total time of algorithm O (n??)



Correctness (i, k, j) relevant:
A[i, k] + B[k, j]

Lem: After O(n” logn) rounds there are 0(n3°/3 + n?>) — D[i,j]l < 0(n®?)

uncovered relevant triples w.h.p.

(i, k,j) is ,covered”
if A*[i, k] and
B*[k,j] are 0(n°?)
in some round

If (i,k,j*),(i"k,j*),(i", k,j) are all relevant,
then (i, k,j) is covered

pick i, j* randomly
B[k, jl = (Ali", k] + Blk,jI = D[i",j])

set all 2(n%?)-entries of A%, B* to «



Correctness (i, k, /) relevant:
A[i, k] + B[k, j]

Lem: After O(n” logn) rounds there are 0(n3=P/3 4+ n?5) — D[i,jIl £ 0(n®?)

uncovered relevant triples w.h.p.

(i, k,j) is ,covered”

If (i,k,j*), (" k,j*), (" k,j) are all relevant, if A*[i, k] and

then (i, k, j) is covered B*[k, j] are 0(n®?*)
in some round

When are (i, k,j*), (i*, k,j*), (", k,j ) all relevant?

bipartite graph G:
we ,cover” a relevant triple (i, k, j)
if i,j,i*,j* form a 4-cycle in Gy,

' need: G, contains many 4-cycles
i (i, k, /) J ‘ ¥
is relevant ° have: many relevant triples

© 0 0

Lem: Any bipartite graph with m > 4n'-> edges contains Q(m*/n*) 4-cyles.



Algorithm Recap (i, k, j) relevant:
|Ai, k] + Blk, j]

Input: BD matrices A, B. Want: C|[i,j] = min A[i, k] + BJk, ]
k — DI[i,j]l < 0(n®2)

1) Compute approximation D[i, j] = C[i, j] + 0(n%?)

compute C[i, j] exactly for all i, j that are multiples of n°%?2

set D[i, j] to some C[i’,;’] by rounding i, (i,k,j) is ,covered

| if A*[i, k] and
2) Cover most relevant triples: B*[k, j] are 0(n°?)

initialize C[i, j] :== in some round

repeat for 0(n%3 logn) rounds:
pick i*,j* randomly
A[i, k] = (Ali, k] + Blk,j*] = D[i,j*]) — (Ali*, k] + B[k, j*] = D[i*,j*])
B*[k,j] = (Ali", k] + Blk,jl = D[i",j])
set all 2(n%?)-entries of A*, B* to o
compute (min,+) product C* = A™ x B*
Cli,j] == min{ C[i,j1, C*[i,j1+ D[i,j*] = D[i*,j*] + D[i",j] }
3) Enumerate uncovered relevant triples:
forall i’,k’,j’ divisible by n%2:
if (i',k’,j") is relevant and uncovered:
foralli’ —n%2 <i<i’, k'—n"2<k<k', j'—n%<j<j"
C[i,j] == min{ C[i,j], A[i, k] + B[k, j] }



Conclusion

-

\_

~

we generalize the subcubic special cases of (min,+) matrix multiplication:

(min,+) product of BD matrices can be solved in rand. time 0(n*%3)

this yields subcubic 0 (n?%?) algorithms for:

- Language Edit Distance, a classic parsing problem from 72

- RNA Folding, a classic bioinformatics problem from ‘80

- Optimal Stack Generation, an open problem by Tarjan

J

Open Problems:

. . ?
1) What is the right exponent [Abboud,Backurs,V-Williams15]

Conditional lower bounds imply that LED and RNA Folding are in Q(n®),

2) Find more applications of BD (min,+) product
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