
Truly Subcubic Algorithms for 
Language Edit Distance and RNA Folding 

via Fast Bounded-Difference Min-Plus Product

Karl Bringmann, Fabrizio Grandoni, Barna Saha, Virginia Vassilevska Williams 

June 11, 2017

16:00, 18:30, 23:00 with OSG, 20:00 without OSG



Bounded Differences (BD) Matrices

Integer matrix 𝑀 has BD if for all 𝑖, 𝑗:

𝑀 𝑖, 𝑗 − 𝑀[𝑖, 𝑗 + 1] ≤ 1

𝑀 𝑖, 𝑗 − 𝑀[𝑖 + 1, 𝑗] ≤ 1

and

More generally:  𝑾-BD when differences are at most 𝑊
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(min,+) Product

For 𝑛×𝑛-matrices 𝐴, 𝐵, their (min,+) product 𝐶 = 𝐴 ∗ 𝐵 is defined by

𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer’71]

trivial algorithm:  𝑂(𝑛;)

best known algorithm:  𝑛;/2?( @AB C� ) [Williams’14]

Standard matrix multiplication: 𝐶 𝑖, 𝑗 = E 𝐴 𝑖, 𝑘 ⋅ 𝐵[𝑘, 𝑗]
�

7
time 𝑂(𝑛G) where 𝜔 ≤ 2.373



(min,+) Product

For 𝑛×𝑛-matrices 𝐴, 𝐵, their (min,+) product 𝐶 = 𝐴 ∗ 𝐵 is defined by

𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

(min,+) product is equivalent to All Pairs Shortest Paths [Fischer,Meyer’71]

trivial algorithm:  𝑂(𝑛;)

best known algorithm:  𝑛;/2?( @AB C� ) [Williams’14]

Big Open Problem:   Is (min,+) product in time 𝑶(𝒏𝟑O𝜺) for some 𝜺 > 𝟎?

Study special cases!



(min,+) Product for Structured Matrices

𝐴S 𝑖, 𝑗 = 𝑥U[V,W]𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

𝐶′ 𝑖, 𝑗 = E𝐴S 𝑖, 𝑘 ⋅ 𝐵S[𝑘, 𝑗]
�
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𝐶 𝑖, 𝑗 = degree	of	highest	monomial	in	𝐶S[𝑖, 𝑗]

Sketch:

Matrices with small entries:

If 𝐴, 𝐵 have entries in −𝑇,… , 𝑇 ∪ ∞
then 𝐴 ∗ 𝐵 can be computed in time 𝑂i(𝑇𝑛G)

[Alon,Galil,Margalit’97]



(min,+) Product for Structured Matrices

Matrices with small entries:

If 𝐴, 𝐵 have entries in −𝑇,… , 𝑇 ∪ ∞
then 𝐴 ∗ 𝐵 can be computed in time 𝑂i(𝑇𝑛G)

[Alon,Galil,Margalit’97]

Matrices with few distinct entries:

If each row of 𝐴 has a small number of distinct entries, 
then for arbitrary 𝐵 we can compute 𝐴 ∗ 𝐵 in truly subcubic time

[Yuster’09]

Question:  Is (min,+) product in time 𝑶(𝒏𝟑O𝜺) for BD matrices?

Why care about BD matrices?



1st Application: Language Edit Distance (LED)

CFG Parsing:
Given a context-free grammar 𝐺 and a string 𝑠 of length 𝑛, is 𝑠 in 𝐿(𝐺)?

[L. Valiant’75]

Language Edit Distance:     „error-correcting CFG parsing“

Given a CFG 𝐺 and a string 𝑠, compute minimum edit distance of 𝑠 to 
any string in 𝐿(𝐺)

... is in time 𝑂i(𝑛G)

insertions, deletions, substitutions

for simplicity: |𝐺| = 𝑂(1)

[Aho,Peterson’72]... is in time 𝑂(𝑛;)

We show using Valiant’s approach:

If (min,+) product on BD matrices is in time 𝑂(𝑛n), 
then LED is in time 𝑂i(𝑛n)

~8 page proof

intuitive reason for BD:  LED(𝑠) and LED(𝑠𝑐) differ by ≤ 1 for any symbol 𝑐



2nd Application: RNA Folding

RNA can be seen as a sequence of symbols from {A,C,G,U} 

Biologists want to predict the secondary structure of RNA:

A can pair with U, and C can pair with G

Given an RNA sequence, find the largest set of
matching pairs, such that no two pairs intersect

AUUGCAG not allowed but AUUGCAG is okay 

Disclaimer: No author of
this paper is a biologist.

[Nussinov,Jacobson’80]... is in time 𝑂(𝑛;)

... can be cast as a LED problem (without substitutions)

If (min,+) product on BD matrices is in time 𝑂(𝑛n), 
then RNA Folding is in time 𝑂i(𝑛n)



3rd Application: Optimal Stack Generation

Optimal Stack Generation:

Given a string 𝑠 over alphabet Σ, determine the shortest sequence of stack
operations push(.), emit, pop s.t. performing these operations starting from
an empty stack will emit 𝑠 and end with an empty stack

for simplicity: |Σ| = 𝑂(1)

... is in time 𝑂(𝑛;) (dynamic programming) [Tarjan’05]

We show: If (min,+) product on O(1)-BD matrices is in time 𝑂(𝑛n), 
then Optimal Stack Generation is in time 𝑂i(𝑛n)

𝑠 = bab

push(b) emit push(a) emit pop emit pop

b b b b b b
a a

b a b

intuitive reason for BD:  OSG(𝑠) and OSG(𝑠𝑐) differ by ≤ 3 for any 𝑐 ∈ Σ



Main Result

... so we have seen that (min,+) product of BD matrices is well motivated

Main Result:
We can compute the (min,+) product of BD matrices

Generalization:
For 𝑾-BD matrix 𝐴 with 𝑊 ≪ 𝑛;OG ≈ 𝑛t.uvu and arbitrary 𝐵

we can compute their (min,+) product in randomized truly subcubic time

here: 𝑶(𝒏𝟐.𝟗)

in randomized time 𝑂(𝑛v.y;) and deterministic time 𝑂(𝑛v.yz)



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

compute 𝐶 𝑖, 𝑗 exactly for all 𝑖, 𝑗	that are multiples of 𝑛t.v

(𝑖, 𝑗)

set 𝐷 𝑖, 𝑗 to some 𝐶[𝑖’, 𝑗’] by rounding 𝑖, 𝑗

If 𝐴, 𝐵 are BD, then their
(min,+) product is also BD (𝑖S, 𝑗S)

𝑛t.v

time 𝑂(𝑛v.u)



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 = 𝐶 𝑖, 𝑗 implies 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖, 𝑗 ≤ 𝑂 𝑛t.v

call these triples (𝑖, 𝑘, 𝑗) relevant

then 𝐶 𝑖, 𝑗 = min
7:(V,7,W)	��@�����

𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples:

fix 𝑖∗, 𝑗∗, and define matrices 𝐴∗, 𝐵∗

𝐴∗ 𝑖, 𝑘 ≔ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖, 𝑗∗ − 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗

𝐵∗ 𝑘, 𝑗 ≔ 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖∗, 𝑗

(min,+) product 𝐶∗ of 𝐴∗, 𝐵∗:

𝐶∗ 𝑖, 𝑗 = min
7
𝐴∗ 𝑖, 𝑘 +𝐵∗ 𝑘, 𝑗

can be cancelled afterwards

= 𝐶 𝑖, 𝑗 − 𝐷 𝑖, 𝑗∗ + 𝐷 𝑖∗, 𝑗∗ − 𝐷 𝑖∗, 𝑗

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples:

fix 𝑖∗, 𝑗∗, and define matrices 𝐴∗, 𝐵∗

𝐴∗ 𝑖, 𝑘 ≔ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖, 𝑗∗ − 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗

𝐵∗ 𝑘, 𝑗 ≔ 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖∗, 𝑗

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

if 𝑖, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗	 are all relevant, then 𝐴∗ 𝑖, 𝑘 , 𝐵∗ 𝑘, 𝑗 = 𝑂 𝑛t.v

set all 𝛺(𝑛t.v)-entries of 𝐴∗, 𝐵∗ to ∞

then (min,+) product of 𝐴∗ and 𝐵∗ can be computed in time 𝑂i(𝑛G�t.v)

(𝑖, 𝑘, 𝑗) is „covered“ if 𝐴∗ 𝑖, 𝑘 and 𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v), i.e., not set to ∞

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples:

repeat for 𝑂(𝑛t.; log 𝑛) rounds:

𝐴∗ 𝑖, 𝑘 ≔ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖, 𝑗∗ − 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗

𝐵∗ 𝑘, 𝑗 ≔ 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖∗, 𝑗

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

set all 𝛺(𝑛t.v)-entries of 𝐴∗, 𝐵∗ to ∞

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

initialize 𝐶� 𝑖, 𝑗 ≔ ∞

pick 𝑖∗, 𝑗∗ randomly

compute (min,+) product 𝐶∗ = 𝐴∗ ∗ 𝐵∗

𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 		𝐶∗ 𝑖, 𝑗 + 𝐷 𝑖, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗ + 𝐷 𝑖∗, 𝑗 	

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round

Lem: After 𝑂(𝑛� log 𝑛) rounds there are 𝑂(𝑛;O�/; + 𝑛v.�)
uncovered relevant triples w.h.p. = 𝑂 𝑛v.�

time 𝑂 𝑛G�t.v = 𝑂(𝑛v.u)

𝑂i(𝑛t.;) iterations

total time 
𝑂i 𝑛v.�



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

3) Enumerate uncovered relevant triples:

”for each uncovered relevant (𝑖, 𝑘, 𝑗):“

𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 𝐴 𝑖, 𝑘 + 𝐵[𝑘, 𝑗]	

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round

now 𝐶� is correct output



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

3) Enumerate uncovered relevant triples:

(𝑖, 𝑗)

(𝑖S, 𝑗S)

for all 𝑖S, 𝑘S, 𝑗S divisible by 𝑛t.v:

if 𝑖S, 𝑘S, 𝑗S is relevant and uncovered:

for all 𝑖S − 𝑛t.v < 𝑖 ≤ 𝑖S,	
𝑘S − 𝑛t.v < 𝑘 ≤ 𝑘S,	
𝑗S − 𝑛t.v < 𝑗 ≤ 𝑗S:	

𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 𝐴 𝑖, 𝑘 + 𝐵[𝑘, 𝑗]	

now 𝐶� is correct output

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round



Algorithm Sketch

Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min
7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

2) Cover most relevant triples

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

3) Enumerate uncovered relevant triples:

for all 𝑖S, 𝑘S, 𝑗S divisible by 𝑛t.v:

if 𝑖S, 𝑘S, 𝑗S is relevant and uncovered:

for all 𝑖S − 𝑛t.v < 𝑖 ≤ 𝑖S,	
𝑘S − 𝑛t.v < 𝑘 ≤ 𝑘S,	
𝑗S − 𝑛t.v < 𝑗 ≤ 𝑗S:	

𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 𝐴 𝑖, 𝑘 + 𝐵[𝑘, 𝑗]	

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round

either all or none are
relevant and uncovered

𝑂(𝑛v.�) iterations

time 𝑂(𝑛t.; log 𝑛)

total time 𝑂(𝑛v.�)
= number of relevant 

uncovered triples

total time of algorithm 𝑂i 𝑛v.�

now 𝐶� is correct output



Correctness

𝐴∗ 𝑖, 𝑘 ≔ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖, 𝑗∗ − 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗

𝐵∗ 𝑘, 𝑗 ≔ 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖∗, 𝑗

set all 𝛺(𝑛t.v)-entries of 𝐴∗, 𝐵∗ to ∞

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

pick 𝑖∗, 𝑗∗ randomly

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round

...

...

Lem: After 𝑂(𝑛� log 𝑛) rounds there are 𝑂(𝑛;O�/; + 𝑛v.�)
uncovered relevant triples w.h.p.

If 𝑖, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗	 are all relevant, 
then 𝑖, 𝑘, 𝑗 is covered



Correctness
|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round

Lem: After 𝑂(𝑛� log 𝑛) rounds there are 𝑂(𝑛;O�/; + 𝑛v.�)
uncovered relevant triples w.h.p.

If 𝑖, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗	 are all relevant, 
then 𝑖, 𝑘, 𝑗 is covered

When are 𝑖, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗∗ , 𝑖∗, 𝑘, 𝑗	 all relevant?

bipartite graph 𝐺7:

𝑖
𝑗if (𝑖, 𝑘, 𝑗)

is relevant

we „cover“ a relevant triple (𝑖, 𝑘, 𝑗)
if  𝑖, 𝑗, 𝑖∗, 𝑗∗ form a 4-cycle in 𝐺7

need:  𝐺7 contains many 4-cycles

Any bipartite graph with 𝑚 ≥ 4𝑛�.� edges contains Ω 𝑚�/𝑛� 4-cyles.Lem:

have:  many relevant triples

𝑗∗
𝑖∗



Algorithm Recap
Input: BD matrices 𝐴, 𝐵.  Want: 𝐶 𝑖, 𝑗 = min

7
𝐴 𝑖, 𝑘 +𝐵[𝑘, 𝑗]

1) Compute approximation 𝐷 𝑖, 𝑗 = 𝐶 𝑖, 𝑗 ± 𝑂 𝑛t.v

compute 𝐶 𝑖, 𝑗 exactly for all 𝑖, 𝑗	that are multiples of 𝑛t.v

set 𝐷 𝑖, 𝑗 to some 𝐶[𝑖’, 𝑗’] by rounding 𝑖, 𝑗

2) Cover most relevant triples:

repeat for 𝑂(𝑛t.; log 𝑛) rounds:

𝐴∗ 𝑖, 𝑘 ≔ 𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖, 𝑗∗ − 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗

𝐵∗ 𝑘, 𝑗 ≔ 𝐴 𝑖∗, 𝑘 + 𝐵 𝑘, 𝑗 − 𝐷 𝑖∗, 𝑗

set all 𝛺(𝑛t.v)-entries of 𝐴∗, 𝐵∗ to ∞

initialize 𝐶� 𝑖, 𝑗 ≔ ∞

pick 𝑖∗, 𝑗∗ randomly

compute (min,+) product 𝐶∗ = 𝐴∗ ∗ 𝐵∗

𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 		𝐶∗ 𝑖, 𝑗 + 𝐷 𝑖, 𝑗∗ − 𝐷 𝑖∗, 𝑗∗ + 𝐷 𝑖∗, 𝑗 	

3) Enumerate uncovered relevant triples:
for all 𝑖S, 𝑘S, 𝑗S divisible by 𝑛t.v:

if 𝑖S, 𝑘S, 𝑗S is relevant and uncovered:
for all 𝑖S − 𝑛t.v < 𝑖 ≤ 𝑖S, 		𝑘S−𝑛t.v < 𝑘 ≤ 𝑘S,		𝑗S−𝑛t.v < 𝑗 ≤ 𝑗S:	
𝐶� 𝑖, 𝑗 ≔ min 	𝐶� 𝑖, 𝑗 , 𝐴 𝑖, 𝑘 + 𝐵[𝑘, 𝑗]	

|𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗
− 𝐷 𝑖, 𝑗 | ≤ 𝑂 𝑛t.v

(𝑖, 𝑘, 𝑗) relevant:

(𝑖, 𝑘, 𝑗) is „covered“ 
if 𝐴∗ 𝑖, 𝑘 and
𝐵∗ 𝑘, 𝑗 are 𝑂(𝑛t.v)
in some round



Conclusion

(min,+) product of BD matrices can be solved in rand. time 𝑂(𝑛v.y;)

we generalize the subcubic special cases of (min,+) matrix multiplication:

this yields subcubic 𝑂(𝑛v.y;) algorithms for:

- Language Edit Distance, a classic parsing problem from ‘72

- RNA Folding, a classic bioinformatics problem from ‘80

- Optimal Stack Generation, an open problem by Tarjan

Open Problems:

Conditional lower bounds imply that LED and RNA Folding are in Ω� 𝑛G ,

1) What is the right exponent?

2) Find more applications of BD (min,+) product

[Abboud,Backurs,V-Williams15]


