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The Online Market Intermediation Problem
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•A sequence σ of n agents, buyers and sellers
•Agents are interested in trading one item only and all items
are identical.
– Sellers enter the market with one item to sell and buyers
want to buy one item.

–Agents are strategic with quasilinear preferences. Their
values follow distributions FS and FB for sellers and buy-
ers respectively.

Intermediary: The intermediary interacts with the se-
quence σ in an online way. The number of agents is unknown
and they are revealed one at a time. Interaction with agents
is performed with posted prices. The intermediary starts
with no items in stock.

Objectives

Welfare A natural objective is to maximize the social
welfareW(σ): the sum of utilities of all agents, plus the
intermediary. In this case payments cancel out, and the
goal becomes transferring items to high value agents.

Profit Maximizing the intermediary’s profit R(σ) is
trickier: trades are only beneficial if performed at the
right price and hoarding too many items can be easily
penalized.

VariantsWe study three versions of the problem. The
unrestricted, the K-item and α-balanced. In the K-
item setting the intermediary is allowed to hold up toK
items at most, while in the α-balanced the ratio between
sellers and buyers is known.

Competitive Ratio
An algorithm is c-competitive for profit if for any σ, FS and FB we have:

ROPT (σ) ≤ cR(σ) + O(µS),
where OPT is the optimal offline algorithm who knows the future, but not the result of
random draws.

The additive term O(µS), where µS is the mean value of a seller, is required. Intuitively,
it’s the starting budget.

The definition for welfare is similar.

Distributional Assumptions
FS and FB have to follow stronger regularity assumptions than Myerson and Satterth-
waite. In particular we need log(FS(x)) and log(1 − FB(x)) are concave (MHR). Just
regularity would yield Ω(n) bounds.

The following properties are useful when dealing with such distributions. For Y ∼ FB:
1.Pr [Y ≥ y] ≥ 1

e for any y ≥ µB and Pr [Y ≥ y] < 1
e for any y > 2µB

2.E
Y (m)

 ≤ Hm · µ and Σm
i=m−k+1 E[Y i:m] ≤ kµ + 2

√
kms

3. x ≤ eµFS(x) for any x ≤ µS

These allow us to quantify relations between prices, probabilities and expectations.

Profit
Theorem 1. The competitive ratio
for profit is:
•Θ(
√
n) in the unrestricted case.

•O(log n) in the K-item case.
• 1 + o(1) in the α-balanced case.

Welfare
Theorem 2. The competitive ratio
for welfare is:
•Θ(log n) in the unrestricted and K-
item case.
• 4 in the α-balanced case.

Algorithm
The posted price algorithm for the unrestricted setting:
•To the i-th seller post qi = F−1
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•Post to all buyers price p = µB.

For welfare, the algorithm posts µS and µB as prices in all settings.

Lower Bound

?

The lower bound of Ω(
√
n) is achieved by a

long sequence of sellers following either one
or many buyers. The intermediary can only
spend O(µS).

As such, the online can store at most O(
√
n)

items from n consecutive sellers.

Upper Bound
On top are the (potential) sales attempted
by the offline. The online algorithm can al-
ways attempt a subset of those sales, by com-
puting a FIFO matching between sellers and
buyers.

The bound follows from the number of
trades combined with Property 3 of the dis-
tribution.

K-Item
Since the intermediary can only hold at
mostK items, the trades generated by long
runs of sellers are fewer. The pink edges are
infeasible.

The online algorithm:
•Posts price q = F−1
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 to sellers, if
stock is not full.
•Posts price p = µB to all buyers.
Note that the potential losses are still O(µS). The online matching produced by this
algorithm is the FIFO matching, rejecting sellers if the queue contains more than K
elements.

α-Balanced
In this case, a ratio α between sellers and buyers is known. In particular the ratio must
drop below α for any prefix of σ and should be tight at the end.

A fractional relaxation gives rise to the following constraint optimization, wherem is the
number of buyers.

max m (p(1− FB(p))− α · qFS(q))
s.t. 1− FB(p) = αFS(q)

p, q ∈ [0,∞).
Note that the prices do not depend on the length of σ.

These prices can then be used for any α-balanced sequence, with the expected profit
converging to the optimal.


