

Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger and Christoph Lenzen

Max Planck Institute for Informatics

June 9, 2017

Transshipment & Single Source Shortest Path

Given **undirected** graph G = (V, E)

- edge **weights** $w \in \mathbb{N}^m$,
- node **demands** $b \in \mathbb{Z}^n$ s.t. $\mathbb{1}^T b = 0$

Undirected Transshipment

$$\min\{\|Wx\|_1 : Ax = b\} = \max\{b^T y : \|W^{-1}A^T y\|_{\infty} \le 1\}.$$

Single Source Shortest Path is special case $b = 1 - n1_s$.

Lemma

The problem $\min\{\|\mathbf{W}^{-1}A^T\pi\|_{\infty}: \mathbf{b}^T\pi=1\}$ is equivalent.

Approximately solve by

minimizing $\Phi_{\beta}(\pi) := \operatorname{Ise}_{\beta}(W^{-1}A^{T}\pi)$, where $\operatorname{Ise}_{\beta}(v)$ is log-sum-exp.

Transshipment & Single Source Shortest Path

Lemma

The problem $\min\{\|\mathbf{W}^{-1}\mathbf{A}^T\boldsymbol{\pi}\|_{\infty}: \mathbf{b}^T\boldsymbol{\pi}=1\}$ is equivalent.

Approximately solve by

minimizing $\Phi_{\beta}(\pi) := \operatorname{Ise}_{\beta}(W^{-1}A^{T}\pi)$, where $\operatorname{Ise}_{\beta}(v)$ is log-sum-exp.

Approach: Gradient Descent on $\Phi_{\beta}(\pi)$

Potential Function Change on Update

$$\Phi_{\beta}(\pi) - \Phi_{\beta}(\pi - h) \ge \nabla \Phi_{\beta}(\pi)^{\mathsf{T}} h - \beta \| \mathbf{W}^{-1} A^{\mathsf{T}} h \|_{\infty}^{2}$$

This suggests to compute h by solving

$$\max\{\nabla\Phi_{\beta}(\pi)^T h: \|\mathbf{W}^{-1}\mathbf{A}^T h\|_{\infty} \leq 1\}.$$

- Another transshipment problem with demand vector $\nabla \Phi_{\beta}(\pi)$.
- Using **oracle** for α -approximation h yields:

Theorem

Using oracle for α -approximate transshipment, one can compute solutions x, y s.t. $\|\mathbf{W}x\|_1 \leq (1+\varepsilon)\mathbf{b}^T y$ with $\tilde{O}(\varepsilon^{-3}\alpha^2)$ oracle calls.

(Truth a bit more complicated: The feasible direction h must satisfy $b^T h = 0$.)

Results: Distributed/Streaming Models

α -oracle

Use the optimal solution on sparse α -spanner.

	Previous	New
Brdc Congest SSSP	$\varepsilon^{-o(1)}(n^{1/2+o(1)}+D^{1+o(1)})$ rounds	$\tilde{O}(arepsilon^{-O(1)}(n^{1/2}+D))$ rounds
Brdc Congest Clique SSSP/STP	$arepsilon^{-o(1)} \emph{n}^{o(1)}$ rounds	$ ilde{O}(arepsilon^{-O(1)})$ rounds
Multipass streaming SSSP/STP	$arepsilon^{-o(1)} \emph{n}^{o(1)}$ passes	$ ilde{O}(arepsilon^{-O(1)})$ passes

- Matches lower bounds in terms of *n* up to log-factors.
- Provides hope towards parallel solutions of SSSP/STP?

Thank you for your attention!

